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Absbnrt. We inruiligate the diffusion motion of a Brownian panicle which is acted upon 
by both B friction forcc with memory eKea and a noise with long-range wrrelaiion eKccts. 
The noise is expressed as/(X. l ) - X - " F ( t ) ,  o>O, where X and I are the displacement and 
time. rapccti\ely. and F(r) has the long-time wrrelation eKect (F(0 )F(r )>- l -p ,  Oca C I ,  
B = 1. I c B c2. The generalizcd Langcvin cquation, corresponding Fokkcr-Planck equalion 
and i ts  solution at large time are established. A variety of anomalous diKusion patterns arc 
derived. Due io the long-range Correlation eKects, Ihc eKcctirc diKusion cocffinmt is depen- 
dent on both the displacement and time. and the probabrlity density for finding the Brownian 
particle at displacement X and time I IS non-Gaussian distribution. When this modcl is 
applied io diffusion on franals, OShaughncssy and Pmcaccia's results can be naturally 
derived. 

The anomalous diffusion in disordered media or fractal media has recently been receiv- 
ing much attention [l-61. Although several approaches [l-61 have been developed to 
treat the anomalous diffusion, the dynamical mechanisms of anomalous diffusion are 
not understood throughout. Muralidhar et a1 [3] applied the generalized Langevin 
equation (GLE) to study the dynamics of anomalous diffusion from the viewpoint of 
the velocity autocorrelation function of a Brownian particle in disordered media. 

Wang [I ,  21 has investigated the dynamical mechanisms from the starting point of 
the GLE and Fokker-Planck equation (FPE), and established the bridge between the 
long-time correlation effects, fractal Brownian motion [7] and anomalous diffusion. It 
has been shown that a kind of dynamical mechanism for anomalous diffusion is the 
long-time correlation effects [I ,  21. Furthermore, Wang [2] has studied biased diffusion 
and found the probability density function (PDF) for finding the Brownian particle at 
displacement X and time t .  The PDF has Gaussian distribution for displacement X. 

However, for single particle diffusion in some disordered media such as fractal 
media, the PDF is generally not a Gaussian distribution [5 ,8 ,9 ]  for displacement. Why 
is the PDF in some disordered media non-Gaussian rather than Gaussian? What is the 
origin of the non-Gaussian PDF? In this paper, we will focus on these questions. 

It is well known that when a Brownian particle moves in a fluid medium, it experi- 
ences two forces: one is the determinative dynamical friction force, the other the random 
fluctuation force originating from random collision between the Brownian particle and 
the particles of the surrounding medium. In the case where the average value of the 
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randomly fluctuating force equals zero and its correlation function is a Dirac S function 
[ 101, the Langevin equation, the associating Fokker-Planck equation and its solution 
have been established [IO]. 

When a Brownian particle moves through dense fluids or fluids with internal degree 
of freedom [ I l l ,  and on the percolation clusters [6, 121, the randomly fluctuating force 
correlation function behaves with the so-called long-range correlation. Wang [ 1,2] has 
studied the dynamics of the Brownian particle when it is acted upon by a friction force 
with memory and a random fluctuation force with long-time correlation. 

However, in this paper, the dynamics of a Brownian particle moving in a disordered 
medium is modelled by a friction force with memory and a noise with temporal and 
spatial correlations rather than white noise. This is different from ordinary Brownian 
motion, and may be called the generalized Brownian motion. Without loss of generality, 
we restrict ourselves to the one-dimensional case. If a Brownian particle of mass M 
starts to move from the origin at time t=O, the equation of motion or GLE can be 
given by 

% = V ( t ) ; M f + M  a ( t - ~ ) V ( ~ ) d r = f ( X , f )  6 
where a(t) is friction memory kernel and the noisef(X, I )  is assumed to decouple as 

f ( X ,  t )  = EX -"F( t )  (2) 

where U is an exponent larger than or equal to zero. In the following it will be proved 
that U is related to the fractal dimension if the medium is fractal, and determined by 
the structure of the medium. E is a proportionality coefficient independent of time and 
displacement but dependent on the exponent U. F(t) has the following properties 

. (F(t))=O (3) 

(F(O)F(t)) = C,(t) =Fat". (4) 

The values of exponent can be taken as 0 < p  < 1, or 1 c p <2, which is determined by 
the dynamical mechanisms of the physical processes considered [I ,  21. The proportional 
coefficient FO is independent of time but dependent on the exponent p ,  which means 
that the proportionality coefficient depends on the concrete physical processes. In the 
following B is contracted in Fa. We believe that the particle diffusion in a turbulent 
medium [SI and a fractal medium, such as percolation clusters [6,8], encounters this 
noise, which originates from both the static disorder (fractal structures) and dynamic 
disorder (random walker). 

Now, we take the following variable transformation 

(5 )  y=X"*I 

in (1). Taking (5) and (2) into ( I ) ,  we obtain that when only the diffusion motion of 
Brownian motion is considered, the asymptotic equivalent GLE is 

a(f-i)u(r)dr=F(f). 
dt 
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The inemory kernel a ( t )  can be obtained by the generalized fluctuation-dissipation 
theorem [Z, 10, 131: 

Cf(') =MKBTa(t) (7) 
where Tis the absolute temperature of the surrounding and KB is Boltzmann's constant. 
Immediately, one has 

a(t)=ao(P)t-P (8 )  

where 

In addition to the characteristic function and Laplace transformation, and after tedious 
computation, we can derive the Fokker-Planck equation associated with (1) together 

(i) When 0 <P < 1 or 1 <P <2, the asymptotic form of WE at large time associated 
with (2) 121. 

with (1) is [2] 

where 

and bo is a proportionality coefficient. In fact, we are more concerned with the diffusion 
motion of the Brownian particle. In the derivation of ( IO)  the terms with to-' have 
been neglected since they approach zero when f is large. Equation (IO) is one of our 
main results, which is derived in detail in the appendix. 

The normalization solution of (IO) with the initial condition P(X,  0 ) = 6 ( X )  can 
readily be shown to be 

where 

From (12), it is easily shown that the mean-square displacement is 
(x'(t)) = (2D)'/("'')p/(u+ 1) 

( O < ~ < l o r I < ~ < 2 , a n d u 2 0 ) .  (14) tP / (o+J l  

Equation (14) demonstrates that the Brownian particle obeys anomalously slow 
(P/(a+ 1) < 1) and fast (P/(a + 1) > 1) diffusions and also is called subdiffusion and 
superdiffusion [4]. Anomalously slow diffusion like (14) has been reported by other 
authors [14]. Anomalously fast diffusion(superdiffusion) has been reported by Heinrichs 
and Kumar [15]. Their superdiffusion is ballistic motion ((X(t)')-t*). 
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After taking the following scaling transformation in (12) 

(15) i'= bt x= bzC+2-Px 

we have 

~ ( x ,  r) = b-P/'P(x, I) (16) 

When u=O, O<p<l or 1 < p < 2 ,  i.e. there is only a long-time correlation, from 
which means that the PDF has self-affinity [17]. 

(14) we have 

(X2(t)> - i p  (17) 

which is consistent with our previous results [I ,  21. When a=O, equations (IO) and 
(12) reduce to the FPE and its solution of [2] at large time, respectively. It has been 
explained that our previous work is a special case of this result. 

(ii) In the case p = 1, the asymptotic FPE when t-tw is [2] 

where b2 is constant. The terms with f-' have been neglected since they approach zero 
when t+w.  

The normalization solution of (18) with the initial condition P(X,  0) = S(X) is 
x2u+2 

4D2t(ln I - 1) 
P(X,  t)=(4zD2t(ln t -  l))-'" exp 

where Dz= K B ~ ~ / M .  In addition to (19). the second moment of the displacement is 
given by 

(x2(t)>-(t In I)"(~+'). (20) 
When u=O, this reduces to the result of [2,3]. However, results similar to (20) have 
been reported [IS, 161. The case o#O, to our knowledge, is a new anomalous diffusion 
behaviour. 

Now, our theory can be applied to the diffusion on fractals. In fact, the major 
predictions of diffusion on fractals presented in [9] can be derived from our model if 
P(X,  I) is regarded as $I., t )  of 191, and X as r of 191. A random walker on the fractal, 
which has a fractal dimension dr, obeys [9, IS] 

(?(r)>-t2/(2+e) (21) 
where 0 is defined in 19, 151. It is easy to see that (14) is equivalent to (21) for 

P - 2  
~ + i  2 + e '  

(XZ(t)> - p ( 2 +  0). 

I - x 2 0 -  0 

Therefore (14) is reduced to 

From (22) and (23), we can obtain 
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From (12), we obtain that the probability to return to the origin is 

3659 

P(0, t )  - PZ. (25) 

p(0, t ) , - t -dc/(2+e)  (26) 

o=df - l .  (27) 

From (22), we have 

for 

We can see that (26) is the same as (1.3) of [9]. 
Inserting (24) and (27) into (IO), we have 

where D(0, dr) is a constant related to dr and 0 [9]. It is found that (28) is the same 
as (1.4) in [9]. In analogy with above operations, p(r,  f )  in [91 can be derived according 
to (12). All predictions of random walker on fractals [9] have been derived in our 
model. 

From the above analysis, it has been found that the diffusion on fractals can be 
explained in our theoretical framework. That is to say, a random walker on fractals 
can be approximately viewed as a Brownian particle moving in a disordered medium 
which provides a noise with decoupled temporal and spatial correlations and a frictional 
force with memory. Furthermore, we know that the exponent d is related to the fractal 
dimension, and smaller than 1 in two-dimensional assembling space, and p is related 
to the exponent 8, which describes the decay of the diffusion coefficient with distanoe 
[9]. Therefore, the exponent c is characteristic of the structure of the disordered 
medium, and p is characteristic of the dynamics of the Brownian particle. 

This paper is a continuation of our efforts [ 1, 21 to establish the statistical mechanics 
of damped diffusing particle driven by the noise with long-range correlations. We have 
established the GLE and corresponding FPE, in which correlation effects are involved. 
From the FPE, it is easy to see how the correlation affects the law of diffusion. The 
PDFS corresponding to case (i) and (ii) have the self-affinity property. It is worth noting 
that when p = 1, and U is not equal to zero, the anomalous diffusion behaviour is 
expressed as ( X ( f ) 2 ) - ( f  In I ) ' / ( ' + ~ ) ,  which is a new anomalous diffusion behaviour. 
Our previous work 11,2] can be recovered as a special case. 

From ( IO) ,  we may infer that noise with temporal and spatial correlations results 
in an effective diffusion coefficient depending on both displacement and time. From (2) 
and (12), we find that a non-Gaussian PDF results from temporal and spatial 
correlations. 

Although our model for the generalized Brownian motion is confined to the one- 
dimensional case, our model can be extended to higher dimension. In fact, (14) and 
(10) which are derived for one dimension can be used to derive the results of a particle 
diffusion on two-dimensional percolation clusters [9]. Our model can be applied to 
explain the results of diffusion in fractals with higher dimension as long as, in our 
model, X is regarded as the distance r that the random walker travels from the origin 
and P(X, t )  as the envelope of the probability per site P(r ,  I) dr that at time t the walker 
is in the shell between r and r+  draround the origin, P(r ,  t ) .  It is evident [6] that since the 
ensemble-averaged diffusion on two-dimensional percolation clusters is approximately 
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isotropic, we can consider the friction kernel and force to be a scalar and the motion 
along any direction is then described by a scalar GLE. This is reasonable since, on 
average, one expects a homogeneously disordered system to be rotationally invariant 
in its properties. 

In our theoretical framework, we have derived the all asymptotic expressions charac- 
teristic of diffusion on fractals [9] ,  including the diffusion equation and its solution, 
anomalous diffusion behaviour, as well as the probability of returning to the origin. It 
should be noted that OShaughnessy and Procaccia’s results are from the starting point 
of phenomenological consideration and on the basis of scaling arguments. However, 
our theory is developed in the framework of strictly statistical mechanics and starts 
from Brownian motion, which is related to microscopic fluctuations. So, our theoretical 
framework has a more reliable foundation than that of O’Shaughnessy and Procaccia. 
It has been shown that a random walker on fractals possibly encounters noise with 
long-range correlation, which has been little recognized by researchers 131. According 
to (U), if the exponent f~ in the noise has been determined by experiment, the fractal 
dimension can be derived from the analysis of the noise. On the other hand, the correla- 
tion of noise becomes an effective constitutive property of the fractal medium. There- 
fore, the fractal dimension of a fractal medium is possibly determined by analysing or 
‘listening’ to the noise of a random walk on the fractal. 
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Appendix 

The derivation of (IO) is as follows. According to the approach developed in [2], we 
use (6)-(9), and can obtain the asymptotic form of the FPE associated with (6): 

Our interest is focused on the asymptotic behaviour. Since when t-+w (O<p<l or 
1<p<2),  fp-*<<l i.e. f’-’-+O, we have neglected two terms including tp-2 in the 
derivation of (A.1). From (9, we have 

dx - x-“ 
dY o+l’  

According to the derivation of a function of a function and (A.2), we have 

aP(y, t )  ~ P ( X  t )  dx 
ay ax dY 
---.-.-=LA 
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From (A.2) and (A.3), one can obtain 

_=-- - 

By virtue of (A.4) and (A.]), it is straightforward to derive equation ( I O ) .  

(A.4) 
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